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ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive form of primary brain cancer, characterized by rapid progression and poor prognosis. 
Recent advancements in molecular profiling have revealed significant heterogeneity within GBM, prompting the classification of distinct 
subtypes based on key genetic mutations. A fundamental aspect of GBM categorization that affects prognosis and treatment response is 
the identification of isocitrate dehydrogenase (IDH)-mutant and IDH-wildtype subgroups. While changes in MGMT and p53 emphasize the 
significance of deoxyribonucleic acid repair mechanisms and tumor suppressor pathways, mutations in ATRX and H3F3A highlight the relevance 
of chromatin remodeling and histone modifications in gliomagenesis. This review provides an overview of the molecular landscape of GBM 
subtypes defined by mutations in IDH, ATRX, H3F3A, MGMT, and p53.
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Abnormal division and proliferation of cells in 
the brain organ, which is located in the skull and 
has very important functions in the functioning 
and organization of the body, cause brain tumors. 
These tumors are classified as primary tumors 
and secondary tumors.[1] The tumors in this 
classification can be benign or malignant tumors. 
However, these tumors can also be fatal.[2,3] 
Brain tumors have no age discrimination on 
people. They occur in children, adults, and 
elderly people. However, it is necessary to open 
a separate parenthesis for children, since brain 
tumor developing in children are detected later 
than in children who develop other types of 
cancer. This situation causes other neurological 
disorders in children.[4,5]

Glioblastoma is a type of brain tumor. Blood-
brain tumor poses a challenge for the treatment 

of brain tumors, for glioblastoma. Various brain 
tumor and neurological studies have encouraged 
research into the use of advanced technologies 
such as deep learning, convolutional neural 
networks, and extreme learning machines for 
brain tumor classification, segmentation, and 
diagnosis. These technologies have shown 
promising results in accurately classifying and 
detecting different types of brain tumors such as 
meningiomas, gliomas, and pituitary tumors.[6-8]

Glioblastoma multiforme (GBM) is a primary 
brain tumor composed of aggressive malignant 
cells that is associated with a poor prognosis.[9] 
World Health Organization has a classification 
for central nervous system tumors, and GBM is 
divided into two subtypes. These are classified 
as isocitrate dehydrogenase (IDH)-wild type and 
IDH-mutant type. Glioblastoma multiforme has 
molecular and cellular heterogeneity rather than 
histological features.[10] It is also known for its 
inter-patient and intra-tumor variability, which 
contributes to the complexity of its management 
and treatment. The delineation of GBM is critical 
in clinical treatments, in the context of therapeutic 
strategy and prognostic stratification. However, 
the optimal target volume in radiation therapeutic 
strategy for GBM remains a matter of debate in 
the medical community.[11]
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Prevalence of glioblastoma multiforme

The incidence of GBM ranges from 0.59 to 5 
per 100,000 people and has been associated 
with poor survival and prognosis.[12] It is 
characterized by its highly malignant nature and 
poor overall survival, making it an important 
public health problem.[13] The rapid progression 
and poor prognosis of the tumor underscore 
the need for effective treatment strategies. 
Glioblastoma multiforme prevalence is a critical 
factor in understanding the burden of this 
disease and guiding public health policies and 
research efforts aimed at improving patient 
outcomes.[14]

Clinical significance of glioblastoma 
multiforme

The aggressive nature of GBM combined 
with its poor prognosis is of great interest for 
clinical practice. It is the most common and 
lethal type of primary malignant brain tumor 
and the median survival rate varies between 15 
and 17 months.[15] Despite extensive research 
and clinical efforts, the median survival rate 
at one year is only 35.7% and the median 
overall survival is 14.6 months, highlighting 
the challenges in managing this disease.[16] 
The clinical efficacy of programmed cell death 
protein 1/programmed cell death ligand 1 
checkpoint blockades in GBM has not been 
found to be significant, underlining the difficulty 
in finding effective treatment strategies. 
Furthermore, GBM is associated with short 
survival and high recurrence rates, posing a 
significant clinical challenge.[17] Heterogeneities 
in prognosis, clinicopathological features 
and immunotherapeutic responses further 
complicate the clinical management of GBM.[18] 
Additionally, dysregulation of various molecular 
factors, such as microRNAs and metabolism-
related genes, has been associated with the 
clinical progression and prognosis of GBM, 
highlighting the multifaceted nature of this 
disease. Overall, the clinical relevance of GBM 
lies in its formidable challenges such as poor 
prognosis, treatment resistance, and molecular 
heterogeneity, which continue to increase 
the urgent need for effective therapeutic 
interventions and personalized management 
strategies.[19]

GLIOBLASTOMA MULTIFORME 
SUBTYPES

IDH mutation and effects

Mutations in IDH are known to be an 
important factor in cancers such as acute 
myelogenous leukemia), and gliomas. 
These mutations result in the production 
of 2-hydroxyglutarate, which is linked to 
altered cellular metabolism, epigenetic 
modifications, and disruption of normal cellular 
differentiation processes. Furthermore, IDH 
mutations have been reported to affect the 
tumor microenvironment, leading to increased 
sensitivity of tumor cells to chemotherapy and 
alterations in the immune response.[20]

It has been shown that mutations occurring 
as a result of genetic alterations of the IDH 
gene trigger hypoxia-inducible factor 1 alpha 
signaling by hypoxia, an important oncogenic 
pathway in malignant gliomas. Isocitrate 
dehydrogenase gene defects or mutations 
reduce glutathione levels and have been 
associated with increased levels of reactive 
oxygen species and sensitivity to chemotherapy. 
The cellular metabolism, epigenetic and other 
biochemical functional effects of IDH defects 
have been the subject of extensive research, 
particularly in the context of therapeutic 
targeting of cancers carrying these defects.[21-23]

ATRX gene and role

The ATRX gene belongs to the SWI/SNF 
family and has been associated with various 
biological processes and diseases, including 
mental retardation, alpha-thalassemia, 
and cancer.[24] Defects or mutations resulting 
from inherited changes in the ATRX gene 
have been associated with syndromal mental 
retardation and down-regulation of alpha-globin 
expression. ATRX is required for the 
development of senescence in response to 
cytostatic chemotherapy.[25] Gliomas have been 
found to be strongly associated with IDH1/2 and 
H3F3A mutation as a result of ATRX mutation. 
In addition, ATRX mutations result in a truncated 
protein and reduced protein expression, further 
elucidating its role in disease pathogenesis.[26]

p53 mutation and cellular functions

The p53 gene, a tumor suppressor gene, is 
a gene with serious functions in the protection 
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of cellular homeostasis and tumorigenesis. Some 
sources also refer to it as the “guardian of the 
genome”. Defects or mutations occurring in the 
p53 gene have been associated with various 
cellular diseases and cancer types. p53 gene 
contains the necessary codes for the synthesis 
of p53 protein. This protein ensures cell cycle 
arrest and blockage, deoxyribonucleic acid (DNA) 
replication errors and repair, apoptosis, and aging 
of the cell.[27] As a result of the defect in the p53 
gene, these tasks cannot be fulfilled or are poorly 
fulfilled, leading to meaningless proliferation in 
the cell and contributing to tumor formation.[28]

In line with the scientific studies conducted 
by research scientists, they found that p53 
mutations block cellular apoptosis and promote 
and accelerate the tumorigenesis reaction.[29] In 
addition, p53 mutations have been associated 
with genetic instability.[30]

The effect of p53 mutations on cancer 
development has been found in various cancer 
subtypes such as skin cancer, colorectal cancer, 
lung cancer, liver cancer, esophageal cancer, 
and oral squamous cell carcinoma.[31-33] Scientific 
studies on p53 gene mutations have been found 
to be severely associated with cancer and subtypes 
of cancer, and have been found to be associated 
with poor prognosis and cancer survival.[34]

Since positive staining of the p53 protein 
often indicates the presence of p53 gene 
mutations, immunohistochemical analysis has 
been proposed as a technique to detect p53 
mutations.[35] It is crucial to remember that not 
all p53 mutations cause abnormal accumulation 
of detectable p53 protein, emphasizing the 
complex nature of p53-related pathways in 
cancer formation.[36]

H3F3A gene and histone modifications

H3.3 histone variation encoded by the H3F3A 
gene is required for chromatin dynamics and 
histone modifications. The control of chromatin 
structure and gene expression is largely 
dependent on histone modifications including 
acetylation, methylation, phosphorylation, and 
ubiquitination.[37] These changes have the ability 
to directly affect the structure and function 
of chromatin and attract effector proteins to 
chromatin, which can alter patterns of gene 
expression.[38] Additionally, it has been proposed 
that different histone modifications with similar 

functions may interact and enhance the stability 
of a chromatin state.[39]

The H3F3A gene encodes the H3.3 
variation, which is involved in spermatogenesis 
and chromatin maturation, among other 
biological activities.[40] Moreover, high-grade 
juvenile gliomas have been found to harbour 
mutations in the H3F3A gene, underlining 
the clinical importance of the gene in 
malignancy.[41] Polyadenylated mRNAs and 
introns in the H3F3A and paralogue H3F3B 
genes distinguish them from the standard H3.1 
and H3.2 histone proteins.[42]

Several studies have also been conducted 
on the landscape of histone modifications and 
various histone modifications such as histone 
code, charge neutralization pattern and signaling 
network have been shown to play unique roles 
in the expression of genes. Histone proteins 
play a crucial role in biological activities due to 
their post-translational modifications that affect 
chromatin structure, gene transcription, and 
epigenetic information.[43]

MGMT gene and its effects on DNA 
repair

The MGMT gene synthesizes 
O6-methylguanine-DNA methyltransferase, which 
is responsible for the removal of alkyl groups at 
the O6 position of guanine and functions as an 
important DNA repair protein.[44] This repair 
mechanism is extremely important because the 
function of MGMT is to neutralize the cellular 
cytotoxicity of alkylating agents, which may 
lead to resistance to chemotherapy.[45] Findings 
from scientific studies have shown that MGMT 
promoter methylation status is associated with 
clinical outcomes in GBM patients and affects 
responses to treatments such as temozolomide.[46] 
Tumor cells with methylated MGMT promoters 
are more sensitive to the cytotoxic effects of 
radiation and alkylating agents due to their 
impaired DNA repair ability.[47]

Regulation of MGMT expression has a critical 
function in cancer therapy. For example, down-
regulation of MGMT expression increases the 
efficacy of chemotherapy by sensitizing cancer 
cells to alkylating agents such as temozolomide.[48] 
The interaction between MGMT and other cellular 
pathways such as autophagy affects DNA damage 
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repair processes and chemosensitivity in cancer 
cells.[49]

Association of ATRX gene with GBM

The highly aggressive form of brain tumor 
known as GBM has been found to be significantly 
affected by the ATRX gene. Research has 
shown a link between many aspects of GBM 
biology and patient outcomes and ATRX 
mutations. Studies show that some genetic 
features typical of proneural GBMs, including 
PDGFRA amplification, TP53 mutation, and 
IDH-1 mutation, are linked to reduced ATRX 
expression.[50]

In line with the findings obtained from 
scientific studies, it has been shown that there 
is a strong correlation between ATRX deletion 
and IDH1-R132H mutation and underlined 
the importance of ATRX in the molecular 
categorization of astrocytic malignancies.[51] 
Increased sensitivity to PDGFR and receptor 
tyrosine kinase inhibitors in GBM cells has been 
associated with ATRX deficiency, suggesting 
possible therapeutic implications for targeting 
ATRX-deficient GBMs.[52]

Both adult and pediatric GBMs have been 
found to have ATRX mutations, although 
different genetic signatures are seen in the 
former compared to the latter. The importance 
of ATRX alterations on tumor progression and 
genomic stability has been highlighted by the 
demonstration that loss of ATRX increases 
tumor growth and inhibits DNA repair processes 
in gliomas.[53]

The effect of p53 mutations on GBM

In the GBM setting, p53 mutations have been 
extensively investigated and have been associated 
with important consequences for tumor behavior 
and patient outcomes. Research has repeatedly 
shown that individuals with GBM who have 
p53 mutations have a worse clinical prognosis 
and higher radioresistance. Research on the 
therapeutic implications of p53 mutations in GBM 
is still ongoing, as these mutations may influence 
how well patients respond to treatment and how 
quickly the disease progresses.[54]

Studies have shown how controversial the 
role of p53 mutations is in the biology of 
astrocytic tumors such as GBM. It has been 

found that p53 gene mutations are required 
for the development of GBM and it has been 
emphasized that the molecular processes linked 
to p53 alterations in this aggressive brain tumor 
need to be understood. Rare p53 mutations were 
found in brain tumors in children, underlining 
the wide range of p53 modifications in various 
patient populations.[55]

According to findings from scientific studies, 
the relationship between changes in p53 
gene mutations and changes in p53 protein 
expression has been examined, which has 
helped to clarify the complex relationship 
between p53 modifications in GBM at both 
the genetic and protein levels. The correlation 
between p53 mutations and unique molecular 
patterns in recurrent GBM subtypes underlines 
the dynamic character of p53 modifications in 
tumor growth.[56]

Inherited variations in the H3F3A gene 
and GBM

Somatic mutations in the H3F3A gene 
have been found to be an important factor in 
the development of GBM, in pediatric cases. 
Studies have shown that differences in the 
H3F3A gene affect the behavior of tumors and 
the prognosis of patients, as it is associated 
with multiple genetic and biological subtypes of 
GBM. Since specific epigenetic modifications 
and gene expression profiles in pediatric high-
grade gliomas have been linked to H3F3A 
mutations, the K27M mutation, the molecular 
features of H3F3A mutant cases are unique.[57]

A correlation between H3F3A mutations 
and other genetic abnormalities such as 
TP53 mutations has been noted in juvenile 
GBM, indicating possible interaction between 
various molecular pathways in tumorigenesis. 
The discovery of H3F3A mutations in juvenile 
high-grade gliomas has implications for 
prognostic and diagnostic indicators in clinical 
practice, as well as insights into the genetic 
landscape of these malignancies.[58]

The importance of understanding the effects 
of H3F3A mutations on tumor biology and 
treatment responses is highlighted by the 
unique clinical features and molecular profiles of 
H3F3A mutant GBMs, which involve differential 
control of transcription factors and epigenetic 
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alterations. The fact that both adult and pediatric 
GBMs have H3F3A mutations highlights the role 
these mutations play in gliomagenesis and tumor 
heterogeneity.[59]

MGMT gene and GBM

In GBM, the MGMT gene is essential because 
it affects tumor behavior, how well treatment 
works, and how patients fare. Methylation of the 
MGMT promoter has been found to be a positive 
prognostic factor and a predictive biomarker for 
response to radiation therapy, in the absence 
of adjuvant chemotherapy. When GBM patients 
get alkylating medications like temozolomide, 
there is a correlation between this epigenetic 
modification and a prolonged lifetime.[60]

It has been demonstrated that MGMT 
downregulation by promoter methylation 
increases the chemosensitivity of malignant 
gliomas to temozolomide, a common 
chemotherapy drug for GBM. The importance 
of this epigenetic alteration in treatment 
response is shown by the finding that adult 
GBM patients treated with temozolomide had a 
better prognosis when the MGMT promoter was 
methylated.[61]

Research has also demonstrated that MGMT 
expression levels have a significant role in 
predicting the prognosis of GBM patients, 
with a poor response to alkylating drugs 
being associated with an unmethylated MGMT 
promoter status. MGMT has been found to be 
a negative effector of GBM invasion, indicating 
that it plays a role in the tumors' aggressive 
nature. In conclusion, the pathophysiology 
and response to treatment of GBM are greatly 
influenced by the MGMT gene and its epigenetic 
control through promoter methylation. It is 
essential to comprehend how MGMT changes 
affect DNA repair activity and chemosensitivity 
in order to create prognostic markers and 
individualized treatment plans for individuals 
suffering from this difficult brain tumor.[62-65]

In conclusion, the division of GBM into 
subtypes according to genetic alterations 
has fundamentally changed our knowledge 
of this aggressive form of brain cancer. By 
examining important genetic markers like p53, 
ATRX, H3F3A, MGMT, and IDH, scientists 
have discovered unique molecular profiles that 

have important ramifications for prognosis 
and therapeutic approaches, as well as 
providing insight into the heterogeneity of 
GBM. Fundamental biological distinctions have 
been brought to light by the identification 
of GBM subtypes that are IDH-mutant and 
IDH-wildtype. Isocitrate dehydrogenase 
mutations have been linked to a better prognosis 
and possible sensitivity to specific therapy. 
Changes in MGMT and p53 have emphasized 
the significance of DNA repair mechanisms and 
tumor suppressor pathways, while mutations in 
ATRX and H3F3A have shed light on the role of 
chromatin remodeling and histone modifications 
in gliomagenesis. The identification of GBM 
subtypes according to mutations in IDH, 
ATRX, H3F3A, MGMT, and p53 signifies 
noteworthy progress in our comprehension 
of this lethal malignancy. By elucidating the 
molecular complexities of GBM etiology, these 
discoveries provide promise for more accurate 
diagnosis, prognosis, and treatment, advancing 
the development of individualized therapeutic 
approaches for individuals facing this tough 
adversary.
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