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ABSTRACT

Prion proteins are significant proteins located on the surface of mammalian cells, closely associated with the nervous system. They were first 
discovered in the context of fatal neurodegenerative diseases known as prion diseases. In these diseases, a pathological form of the cellular prion 
protein, known as scrapie prion protein, which exhibits a beta-sheet-rich structure, is observed. Although the exact function of prion proteins is not 
yet fully understood, there is growing speculation about their potential role in memory formation and long-term memory processes. In this review, 
we address prion proteins, prion-like proteins, and their relationship with memory processes.
Keywords: Memory, memory formation, prion diseases, prion-like proteins, prion protein.

The cellular prion protein (PrPC) is 
a surface protein found in all mammalian 
tissues and is encoded by the PRNP gene, 
located on chromosome 20 in humans and 
chromosome 2 in mice. The PrPC is widely 
expressed in the central nervous system (CNS), 
particularly in adult neurons and glial cells 
during early development. After translation and 
co-translational extrusion into the lumen of the 
endoplasmic reticulum (ER), the PrPC protein 
adopts its physiological structure, which consists 
of two distinct regions: a long N-terminal tail 
containing four or five octapeptide repeats, and 
a globular C-terminal domain comprising three 
alpha-helices (a-helices) and three beta-strands 
(b-strands). The N-terminal region also includes 
a series of repeat sequences containing histidine 
residues that aid in coordinating the binding of 
divalent metal ions. Meanwhile, the C-terminal 
region serves as the site for post-translational 

modifications in PrPC.[1-6] Overall, PrPC exhibits 
an unstructured conformation primarily 
composed of a-helices.[7]

The PrPC is initially synthesized as a 
precursor protein (pre-pro-PrP) consisting of 
253 amino acids. This synthesized protein 
contains a signal peptide at its N-terminus 
and a glycosylphosphatidylinositol (GPI) anchor 
signal sequence at its C-terminus. The signal 
peptide directs the pre-pro-PrP to the ER, 
where the N-terminal flexible tail is first cleaved. 
Subsequently, the protein loses the GPI signal 
peptide at residue 230 in the C-terminal region 
to acquire a GPI anchor. The removal of both 
signal sequences reduces the PrP protein to 
208 amino acids. The resulting pro-PrP is then 
transported to the Golgi apparatus, where it 
undergoes N-linked glycosylation at Asn181 and 
Asn197 during its transit. Upon reaching the 
Golgi, the addition of a GPI anchor facilitates 
its attachment to the plasma membrane before 
being delivered to the cell surface.[8-11]

When examining post-translat ional 
modifications, several cleavage events 
are observed, with four of these cleavages 
appearing to be conserved.[6] These four 
conserved processes are referred to as 
a-cleavage, b-cleavage, gamma (g)-cleavage, and 
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shedding.[12] The process known as a-cleavage 
occurs under physiological conditions in the 
central hydrophobic region of mature PrPC. It 
is the major proteolytic event that produces 
C1 (~16 kDa) fragments, which accumulate in 
the plasma membrane. Depending on the cell 
type and brain region, C1 fragments constitute 
5-50% of the total PrPC.[12,13] In humans, 
the a-cleavage occurs within the amino acid 
sequences spanning positions 106-126.[14] As 
a result of a-cleavage, two fragments, N1 
(~11 kDa) and C (~18 kDa), are produced. 
For N1, neuroprotective functions have been 
suggested. Recently, it has been shown that the 
expression of C1 inhibits prion replication in 
mice and has a protective effect.[12,15]

b-cleavage occurs at the end of the 
octapeptide repeat region and is similar to 
a-cleavage, but it typically takes place under 
pathological conditions. In the human sequence, 
it occurs around the 90th amino acid position. 
It is believed that b-cleavage has a protective 
effect under oxidative stress. As a result of this 
cleavage, the N2 (~9 kDa) and C2 (~20 kDa) 
fragments are produced. However, unlike the 
C1/N1 fragments derived from a-cleavage, 
there is no experimental evidence supporting 
the physiological function of the C2/N2 
fragments.[6,12,13]

A third physiological cleavage of PrPC occurs 
near the GPI anchor and results in the release 
of nearly full-length protein from the plasma 
membrane. This cleavage takes place close 
to the C-terminus. It leads to the shedding 
of PrP into the extracellular space, leaving 
only a few amino acid residues remaining on 
the cell surface.[12,13] The process of releasing 
the extracellular domains of membrane-bound 
proteins through proteolytic cleavage is referred 
to as shedding.[16] Shedding PrP was first 
identified in the preparations of prion-infected 
hamster brains. Its physiological function is 
not fully understood, but it has been suggested 
that it could serve as a good substrate for prion 
replication. It is also believed to provide a 
promising and effective target for the treatment 
of various pathological conditions.[12,17,18]

Finally, when the nonglycosylated PrPC 
undergoes g-cleavage, it produces the soluble N3 
(~20 kDa) and a short C3 (~5 kDa) fragment.[19] 

The cleavage is likely to occur in a region between 
amino acids 170-200, immediately N-terminal 
to the first N-glycosylation site, and it is believed 
to be mediated by a metalloprotease. The 
increased expression of C3 in brain samples 
from Creutzfeldt-Jakob disease (CJD) may 
indicate that g-cleavage is pathophysiological 
in nature.[6] These post-translational 
modifications result in the formation of different 
membrane-bound or shed PrPC fragments.[12]

Experiments have shown that the N-terminal 
region plays a role in neurodegeneration, 
while the C-terminal region has the ability to 
prevent neurodegeneration. Further research 
has revealed that the C-terminal region can 
regulate the N-terminal region through direct 
interaction.[20]

The PrPC is typically found on the cell surface, 
and its sequence contains potential regions for 
N-linked glycosylation at residues 187 and 197. 
It can exist in three forms: monoglycosylated, 
diglycosylated, or unglycosylated. Its expression 
is particularly observed in nerve cells, and 
all three forms can be detected in whole 
brain homogenates.[21,22] In a study conducted 
on humans, quantitative transcript analysis 
of 27 different tissues from 95 individuals 
revealed that the prion gene PRNP is widely 
expressed in all 27 human tissues, in addition 
to mitochondria. The highest expression levels 
were found in the brain, particularly in nerve 
tissues, followed by the ovaries, prostate, heart, 
gallbladder, endometrium, adrenal glands, 
bladder, thyroid, testes, skin, esophagus, and 
lungs.[23,24] Furthermore, the independent 
transmission of prion conformers during 
chromatin-bound information separation, as 
well as their passage through both mitotic and 
meiotic divisions, has led to the hypothesis that 
prion proteins could be epigenetic elements.[25]

The PrPC protein has two transmembrane 
forms, which are referred to as NtmPrPC and 
CtmPrPC.[26] The CtmPrPC and NtmPrPC are formed 
when some PrP molecules adopt orientations 
where either the C-terminus or N-terminus 
faces opposite directions relative to the ER 
membrane, with the respective terminus either 
facing the ER lumen or the cytoplasm. However, 
the exact mechanisms behind the formation of 
all these forms remain unclear.[27]
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Functions of prion protein

Although its physiological functions have 
not been fully elucidated, several studies have 
linked the overexpression of CtmPrPC with 
neurotoxicity.[28] However, there are studies 
suggesting that PrPC may play a significant role 
in cancer treatment in the future.[29,30]

There is also strong evidence supporting 
the close relationship between PrPC and stem 
cells. PrPC is expressed in various embryonic 
stem cells and has been associated with the 
proliferation and self-renewal of stem cells.[31] 
The PrPC expression is regulated according to 
the degree of stem cell differentiation and is 
involved in signaling pathways that play a role 
in the formation of various cell types.[32] In a 
study conducted by Siberchicot et al.[33] on mice, 
it was suggested that PrPC protein may play a 
role in the expansion of hematopoietic stem 
cells during aging.

It is known that PrPC protein plays a role 
in various processes, including neuronal 
differentiation, neuroprotection, signal 
transduction, and cell adhesion.[7] Knockout 
methods of PrPC provide strong evidence for 
its neuroprotective functions.[34] In the human 
forebrain, PrPC protein begins to be expressed 
at the 11th week of gestation and continues until 
the end of pregnancy. This expression primarily 
occurs along axonal pathways, suggesting that 
PrPC may play a role in axonal growth.[32]

Although studies on PrPC have primarily 
focused on the nervous system, recent evidence 
shows that cellular PrPC not only regulates stem 
cell renewal but also modulates proliferation 
and apoptosis resistance in cancer cells.[35] 

Additionally, other studies have reported high 
expression of the PRNP gene in cancer tissues.[36]

When misfolded proteins exceed the level 
that the ER can tolerate, a signaling pathway 
known as the unfolded protein response (UPR) 
is triggered.[37] The UPR is also known as the 
ER stress response.[38] In cells, the role of UPR 
is to maintain ER homeostasis by reducing 
the load of misfolded proteins.[39] In a study 
conducted by Gao et al.[40] on lung cancer 
patients, it was suggested that PrPC contributes 
to the pathogenesis of lung cancer by activating 
the UPR, which is a response that alleviates ER 
stress.

The term “prion-like misfolding” is also 
considered to be an underlying mechanism in 
neurodegenerative diseases such as Alzheimer's 
and Parkinson’s. However, much remains 
unknown about the fundamental biology of 
prions.[41]

PRION DISEASES
Historically, the first cellular prion protein, 

PrPC, was discovered as the normal host 
counterpart of the infectious agent responsible 
for transmissible spongiform encephalopathies, 
namely the pathogenic scrapie prion protein 
(PrPSc).[42] Prion diseases are a result of the 
regular accumulation of GPI-anchored PrPSc 
protein expressed on the cell surface.[43] The 
PrPSc is an isoform of PrPC that is self-
propagating. This protein is encoded by the 
host but its misfolded or post-translational 
forms are the cause of the disease. The 
diseased PrPSc protein tends to alter the 
a-conformational conversion of healthy PrPC, 
and thus, PrPC expression is essential for 
the pathogenesis of prion diseases. In the 
absence of PrPC, PrPSc formation is halted, 
and existing PrPSc is cleared by an unknown 
mechanism.[44-47] Additionally, in prion vaccine 
studies conducted on PrPC knockout mice, it 
was observed that the mice did not develop 
prion diseases, providing evidence for the 
requirement of PrPC for the propagation of 
PrPSc.[48] The PrPSc contains a high b-sheet 
content. Compared to PrPC, which primarily 
exhibits an a-helix structure, PrPSc is resistant 
to proteases, and its b-sheet content makes it 
prone to aggregation.[49,50]

Prion diseases are distinct from other 
neurodegenerative diseases due to their 
transmissibility between individuals, as well 
as the existence of sporadic, genetic, and 
acquired forms.[51] Human prion diseases include 
the following: CJD, Gerstmann-Sträussler-
Scheinker syndrome, and fatal familial 
insomnia.[44] These diseases are characterized 
by the accumulation of PrPSc in the brain, 
spongiform neurodegeneration, and neuronal 
cell loss. Approximately 15% of these cases are 
genetic. The genetic nature of 15% of cases 
may provide opportunities for early therapeutic 
intervention to delay or prevent the disease.[52,53]
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In prion diseases, activation of microglia and 
astrocytes is observed before neuronal death or 
neuronal damage occurs.[54] In a study by Aguzzi 
and Zhu,[55] they suggested that microglia play a 
neuroprotective role in prion diseases.

The clinical features of this disease can 
vary, but common signs in the CNS include the 
accumulation of abnormally folded, protease-
resistant prion protein, astrogliosis, microgliosis, 
neuroinflammation, and neurodegeneration. All 
prion diseases are fatal, and there is currently 
no treatment available.[44,54]

PRION PROTEINS AND MEMORY
Memory, prion, and prion-like proteins

Short-term (STM) and long-term memories 
(LTM) are closely linked. Information received 
from the environment and retained in the short 
term eventually forms long-term memories. 
However, past experiences influence our short-
term memories.[56] Short-term memories last 
from minutes to hours, while LTM can persist 
from days to weeks. One of the key differences 
between LTM and STM is that long-term 
memory requires the activation of new gene 
expression. However, it is not only the new 
gene expression that is essential, but also the 
translation of dormant messenger ribonucleic 
acids (mRNAs) stored in synapses, which 
are induced by experience. Protein synthesis 
induced by experience is necessary for LTM. To 
consolidate long-term memory, both cellular and 
local mRNA translation must occur, with the 
latter ensuring the spatiotemporal regulation of 
gene expression.[57,58]

Although protein synthesis in synapses is 
necessary for long-term memory, the theory 
proposed by Tompa and Friedrich[59] in 1998 
addresses how memory can last for days 
or months despite the rapid degradation of 
proteins. Their theory suggests that non-toxic 
prions involved in memory can self-renew 
indefinitely and catalyze the conformational 
conversion of newly synthesized proteins into 
prion forms.[59]

The results of a study by Leighton et al.[60] in 
zebrafish suggest that prion protein is essential 
for learning and memory functions in zebrafish. 
The PrPC can contribute to memory formation 

through various mechanisms, and its conserved 
role in learning and memory is supported.

Additionally, Ondrejcak et al.[61] noted 
that amyloid b-oligomers, by binding to 
PrPC, rapidly and strongly inhibit long-term 
potentiation, which includes synaptic 
activity-dependent persistent strengthening. 
Similarly, they highlighted that prion protein 
is required for the inhibition of long-term 
depression associated with synaptic weakening, 
mediated by soluble tau aggregates.

Prion-like domains (PrLDs) belong to the 
class of intrinsically disordered regions (IDRs). 
The IDRs can be defined as regions that do 
not adopt stable three-dimensional structures 
and tend to serve as centers for biomolecular 
complexes. They have low sequence complexity 
and are rich in glutamine and asparagine. These 
domains are frequently found among regulatory 
molecules and RNA-binding proteins. However, 
the physiological role of PrLDs remains 
unclear.[62,63]

The addition of this domain to non-harmful 
proteins is sufficient to confer prion-like 
behavior. Approximately 70 human RNA-binding 
proteins (RBPs) contain PrLDs.[64] Polypeptides 
containing similar PrLDs are generally referred 
to as prion-like proteins.[65] These regions 
may play a role in adapting to changing 
environmental conditions, immune responses, 
and memory formation.[66] The removal of these 
PrLD regions results in the prion protein losing 
its prion properties.[67]

In vertebrates, cytoplasmic polyadenylation 
element binding proteins (CPEBs) regulate 
translation in the brain and are part of a family 
of four RNA-binding proteins responsible for 
controlling various aspects of higher cognitive 
functions. The CPEB forms are “prion-like” 
motifs capable of templating other soluble 
CPEB molecules, transforming them into a 
prion form that can self-propagate.[59] The 
understanding of translational control critical for 
memory formation began with the identification 
of molecules that affect the 5' untranslated 
region (UTR) and 3’UTR regions of mRNAs. 
Generally, research on the translational control 
underlying memory has primarily focused on 
cap-dependent mechanisms. A tRNA and the 
eIF2 complex bind to the 5’UTR, and the Gcn2 
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protein kinase, which phosphorylates eIF2 and 
inhibits protein synthesis, has been shown to 
affect the expression of many proteins with 
negative effects on memory in Gcn2(-/-) mice. 
CPEB proteins control the translation of mRNAs 
by binding to the U-rich CPE region located in 
the 3’UTR.[68-70] Prion-like CPEB protein clusters 
are considered to be the default substrates for 
long-term memory, and CPEB3 is regarded as 
crucial for long-term memory and long-term 
synaptic plasticity in the hippocampus.[71,72] 
Additionally, Reselammal et al.[73] in their study 
emphasize that the prion-based mechanism of 
the CPEB3 molecule is important for long-term 
memory, supporting this notion. In a study 
conducted by Kozlov et al.[69] on Drosophila, it 
was observed that the deletion of the 3’UTR 
of the Drosophila CPEB protein Orb2 gene 
resulted in long-term memory loss.

Additionally, one of the most affected 
and studied regions in prion diseases is the 
hippocampus, which is responsible for memory 
and reinforcement.[74] According to a study 
by Ford et al.,[75] cognition and memory are 
among the six most problematic symptoms for 
caregivers of individuals with prion diseases. 
However, Joseph Stephan, who works on the 
prion-like protein CPEB3 in long-term memory, 
has stated that while the CPEB3 protein is 
indeed very important, it is not entirely sufficient 
for long-term memory.[72,76]

In conclusion, although prion proteins are 
widely known for their association with prion 
diseases, their cellular roles are quite diverse. 
Prion proteins, due to their flexible regions, 
are capable of self-conformational changes, 
making them proteins that essentially carry 
their own information. Prion-like proteins 
with similar domains can also undergo similar 
transformations. Their disadvantages include 
the potential to transform into pathological 
forms and exhibit a tendency to aggregate, 
while their advantages lie in their ability to 
contribute to memory formation. The cognitive 
impairments, primarily memory loss or decline, 
caused by prion diseases and prion-like protein 
disorders highlight the role of prion proteins 
in supporting memory and memory formation. 
However, further studies are needed to clarify 
the physiological and pathological roles of prion 
proteins.
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